Progressive Clustering of Big Data with GPU Acceleration and Visualization

Jun Wang¹, Eric Papenhausen¹, Bing Wang¹, Sungsoo Ha¹, Alla Zelenyuk², and Klaus Mueller¹

¹Computer Science Department, Stony Brook University

²Pacific Northwest National Laboratory

The Internet of Things and People

Big Data for Scientific Research

Nature - Big Data Sept. 3, 2008, Vol. 455, Issue 7209

Science - Dealing with Data Feb. 11, 2011, Vol. 331, Issue 6018

Our Data – Aerosol Science

Understand the processes that control formation, physicochemical properties and transformations of particles

Acquired by a state-of-the-art single particle mass spectrometer (SPLAT II) often deployed in an aircraft

Our Data – Aerosol Science

SPLAT II can acquire up to 100 particles per second at sizes between 50-3,000 nm at a precision of 1 nm

Creates a 450-D mass spectrum for each particle

Overall Goal:

Build the hierarchical structure of particles that can be used in automated classification of new particle acquisitions

SpectraMiner

Our Data – Aerosol Science

Data Scale:

- 450 dimensions
- Typically, several millions of points

Goal:

- Overall: hierarchical (tree) structure
- In this talk: parallel clustering algorithms for
 - Redundancy elimination
 - Learning the leaf level of the tree

Incremental k-Means – Sequential

The old CPU-based solution

```
Input: data points P, distance threshold t
Output: clusters C
C = empty set
for each unclustered point p in P
  if C is empty then
      Make p a new cluster center and add it into C
  else
      p = next unclustered point
      Find the cluster center c in C closest to p
      let d = distance(c, p)
      if d \le t then Cluster p into c
      else Make p a new cluster center added to C
      end if
   end if
end for
return C
```


Incremental k-Means — Parallel

NEW GPU-based solution

```
Input: data points P, distance threshold t, batch size b, max
    iteration M
Output: clusters C
C = empty set
while number of un-clustered points in P > 0
   Run Alg. 1 until a number of b clusters B emerge
   Iteration i = 0
   while i < M and B is not stable
      in parallel:
          for each unclustered point p<sub>i</sub>
              Find the center b_i in B closest to p_i
              if distance(b_i, p_i) < t then c_i = b_i
              else c_i = null
          end for
      on CPU: Assign p_i to b_i if c_i is not null
      in parallel: update centers of B
   end while
   Add B to C
end while
return C
```


Incremental k-Means — Parallel

GPU Thread Block: 32 × 32 threads

If we set the batch size b = 96:

- A group of 96/32 = 3 cluster centers is mapped to a column of the block
- Number of thread block launched: N/32

Dimension Reduction and the Threshold t

Dimension standard deviations by *parallel reduction*

Comments and Observations

Algorithm merges the incremental k-means algorithm with a parallel implementation (k=C)

Design choices:

- C=96 good balance between CPU and GPU utilization
- With C>96 algorithm becomes CPU-bound
- With C<96 the GPU would be underutilized
- A multiple of 32 avoids divergent warps on the GPU
- Max iterations = 5 worked best

Advantages of the new scheme:

Second pass of previous scheme no longer needed

GPU Implementation

Platform

- 1-4 Tesla K20 GPUs
- Installed in a remote 'cloud' server

Parallelism

- Launch N/32 thread blocks of size 32 x 32 each
- Each thread compares a point with 3 cluster centers
- Make use of shared memory to avoid non-coalesced memory accesses

Quality Measures

Cluster quality measure: Davies-Bouldin (DB) index

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max(\frac{\sigma_i + \sigma_j}{M_{ij}})$$

- σ_i intra-cluster distance
- M_{ij} inter-cluster distance
- The lower the DB, the better the quality

Acceleration by Sub-Thresholding

- Sub-thresholding:
 - Points with **small distance** to the center are settled and will not be re-visited in inner iterations
- > This also somehow improves the DB index

Data Size	Sequential	Parallel	ST: 0.3	ST: 0.2	ST: 0.15
10k	0.527	0.539	0.540	0.537	0.529
50k	0.546	0.590	0.548	0.554	0.539
100k	0.550	0.584	0.600	0.570	0.544
200k	0.564	0.587	0.640	0.593	0.564

Results – Different Settings

About 33x speedup

Results – Multi-GPU

4-GPU has about 100x speedup over sequential

In-Situ Visual Feedback (1)

Visualize cluster centers as summary snapshots

- Glimmer MDS algorithm
- Intuitive 2D layout

Color map:

- Small clusters map to mostly white
- Large clusters map to saturated blue

We find that early visualizations are already quite revealing

- This is shown by cluster size histogram
- Cluster size of M>10 is considered significant

In-Situ Visual Feedback (2)

In-Situ Visual Feedback (3)

Conclusions and Future Work

Current approach quite promising

- Good speedup and results
- In-situ visualization of data reduction process with early valuable feedback

Future work

- More efficient data storage facilities
- Load-balancing point for multi-GPU
- Accelerate the hierarchy building
- A comprehensive VA system

Final Slide

Thanks for attending!

And thanks to NSF and DOE for funding

Any questions?